P-Channel Enhancement Mode MOSFET 1. Gate 2. Source 3. Drain SOT-23 Plastic Package ## **Absolute Maximum Ratings** | , 15001410 | | | | | |---------------------------------------|--|------------------|---------------|------| | Parameter | | Symbol | Value | Unit | | Drain-Source Voltage | | -V _{DS} | 30 | V | | Gate-Source Voltage | | V_{GS} | ± 12 | V | | Drain Current | $T_A = 25$ °C
$T_A = 70$ °C | -I _D | 4
3.2 | А | | Peak Drain Current 1) | | -I _{DM} | 27 | Α | | Power Dissipation 2) | T _A = 25°C
T _A = 70°C | P_{D} | 1.4
0.9 | W | | Junction and Storage Temperature Rang | g | T_J,T_stg | - 55 to + 150 | °C | ¹⁾ Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)} = 150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_j = 25$ °C ## **Thermal Characteristics** | Parameter | Symbol | Max. | Unit | |---|----------------|-----------|------| | Maximum Thermal Resistance from Juntion to Ambient at t ≤10s ¹⁾ at steady-state ^{1) 2)} | $R_{ heta JA}$ | 90
125 | °C/W | ¹⁾ The value of R_{9JA} is measured with the device mounted on 1in²FR-4 board with 2 oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. $^{^{2)}}$ The power dissipation P_D is based on T_{J(MAX)} = 150°C.using≤ 10 s Junction to ambient thermal resistance. $^{^{2)}}$ The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient. ## Characteristics at $T_j = 25^{\circ}C$ unless otherwise specified | Parameter | Symbol | Min. | Тур. | Max. | Unit | |--|---------------------|-------------|-------------|----------------|------| | Drain-Source Breakdown Voltage
at -I _D = 250 μA | -BV _{DSS} | 30 | - | - | V | | Gate-Source Threshold Voltage at $V_{DS} = V_{GS}$, $-I_D = 250 \text{ uA}$ | -V _{GSth} | 0.5 | - | 1.3 | V | | Drain-Source Leakage Current
at $-V_{DS} = 30 \text{ V}$
at $-V_{DS} = 30 \text{ V}$, $T_j = 55^{\circ}\text{C}$ | -I _{DSS} | -
- | -
- | 1
5 | μΑ | | Gate Leakage Current at $V_{GS} = \pm 12 \text{ V}$ | I _{GSS} | - | - | ± 100 | nA | | On state drain current at $-V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ | -I _{D(ON)} | 27 | - | - | Α | | Drain-Source On-State Resistance
at $-V_{GS} = 10 \text{ V}$, $-I_D = 4 \text{ A}$
at $-V_{GS} = 4.5 \text{ V}$, $-I_D = 3.7 \text{ A}$
at $-V_{GS} = 2.5 \text{ V}$, $-I_D = 2 \text{ A}$ | R _{DS(on)} | -
-
- | -
-
- | 50
60
85 | mΩ | | Forward Transconductance at -V _{DS} = 5 V, -I _D = 4 A | g _{FS} | - | 17 | - | S | | Diode Forward Voltage at I _S = 1 A, V _{GS} = 0 V | -V _{SD} | 0.7 | - | 1 | V | | Maximun Body-Diode Continuous Current | -I _S | - | - | 2 | Α | | Pulsed Body-Diode Current 1) | -I _{SM} | - | - | 27 | Α | | Input Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz | C _{iss} | - | 645 | - | pF | | Output Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz | C_{oss} | - | 80 | - | pF | | Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz | C_{rss} | - | 55 | - | pF | | Turn-On Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω | t _{on} | - | 6.5 | - | ns | | Turn-On Rise Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω | t _r | - | 3.5 | - | ns | | Turn-Off Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω | t _{off} | - | 41 | - | ns | | Turn-Off Fall Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω | t _{off} | - | 9 | - | ns | $^{^{1)}}$ The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C.using≤ 10 s Junction to ambient thermal resistance.